(12) United States Patent
Erol et al.

(54) TECHNIQUES FOR PERFORMING OPERATIONS ON A SOURCE SYMBOLIC DOCUMENT

(75) Inventors: Berna Erol, Burlingame, CA (US); Jonathan Hull, San Carlos, CA (US); Dar-Shyang Lee, Union City, CA (US)

(73) Assignee: Ricoh Company, Ltd., Tokyo (JP)

(45) Date of Patent: Feb. 16, 2010

(21) Appl. No.: 10/661,052
(22) Filed: Sep. 12, 2003

71 Claims, 5 Drawing Sheets

ABSTRACT

Recorded information is accessed. A source document is determined using the recorded information. If a criterion is satisfied based on the recorded information and the source document, an action to be performed is determined. The action is then performed if it is determined that the criterion is satisfied.

Franklin et al., “Jabberwocky: you don’t have to be a rocket scientist to change slides for a hydrogen combustion lecture,” *Intelligent User Interfaces*, pp. 98-105 (2000).


WebEx Presentation Studio, presenter.com.


* cited by examiner
FIG. 1
Fig. 2
Determine recorded information

Determine a source document

Determine a portion of the source document

Determine if a criterion is satisfied

Determine an action associated with the criterion

Perform the action

FIG. 3
Recorded information

Information processor

Recorded information and portion of source document

Criteria determiner

Action

Action performer

Criteria

Actions

devices

FIG. 4
FIG. 5
TECHNIQUES FOR PERFORMING OPERATIONS ON A SOURCE SYMBOLIC DOCUMENT

CROSS-REFERENCES TO RELATED APPLICATIONS

The present application incorporates by reference for all purposes the entire contents of the following:
U.S. application Ser. No. 10/412,757, filed Apr. 11, 2003;
U.S. application Ser. No. 10/660,867, filed concurrently with the present application;
U.S. application Ser. No. 10/660,867, filed concurrently with the present application; and

BACKGROUND OF THE INVENTION

The present invention generally relates to techniques for determining actions to perform and more specifically to techniques for using recorded information and portions of a source document to determine actions to perform.

Presentations are a powerful tool for presenting information to participants. During the presentation, slides from a source document are outputted and displayed while a presenter may describe or provide explanation for the outputted slides. At certain points during the presentation, certain actions may be desired. For example, a participant may want to view a translated slide of the outputted slide. Conventionally, in order to view the translated slide, a participant must recognize that a certain slide has been outputted and then manually initiate a translation program to translate the outputted slide or manually retrieve a pre-translated slide that corresponds to the outputted slide.

In addition to the above action, other actions may be desired, such as notifying participants that a presentation has started when a first slide in a source document is outputted and displayed. Also, different actions may be desired when different slides are outputted and displayed. For example, a video may be played or an e-mail may be sent when a certain slide is outputted. Conventionally, these actions are performed manually.

Accordingly, there is a need for automated techniques for determining actions to perform based on recorded information of an outputted slide from a source document.

BRIEF SUMMARY OF THE INVENTION

Embodiments of the present invention generally relate to determining actions to perform. Embodiments of the present invention access recorded information. A source document is then determined using the recorded information. If a criterion is satisfied based on the recorded information and the source document, an action to be performed is determined. The action is then performed if it is determined that the criterion is satisfied.

In one embodiment, techniques performing an action are provided. The techniques include: accessing recorded information; determining a source document using the recorded information; determining if a criterion is satisfied based on the recorded information and the source document; determining an action to be performed if the criterion is satisfied; and performing the action if it is determined that the criterion is satisfied.

In another embodiment, techniques for performing an action are provided. The techniques include: accessing a first piece of information in recorded information, the first piece of information including information in a source document; comparing the first piece of information to information in the source document to determine information in the source document that matches the first piece of information; determining if a criterion is satisfied based on the first piece of information and matched information in the source document;

determining an action to be performed if the criterion is satisfied; and performing the action if it is determined that the criterion is satisfied.

In yet another embodiment, techniques for determining translated slides of source document slides in a source document are provided. The techniques include: accessing recorded information; determining a source document slide in the source document using the recorded information; determining a translated slide of the source document slide; and communicating the translated slide to a device.

A further understanding of the nature and advantages of the inventions herein may be realized by reference of the remaining portions in the specifications and the attached drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts a simplified block diagram of a system for capturing information used to determine actions to perform according to one embodiment of the present invention;

FIG. 2 is a simplified block diagram of a data processing system that may incorporate an embodiment of the present invention;

FIG. 3 depicts a simplified flow chart of a method for using recorded information and portions of a source document to determine actions to perform according to one embodiment of the present invention;

FIG. 4 illustrates a simplified block diagram of a system for performing actions using recorded information and information from a source document according to one embodiment of the present invention; and

FIG. 5 illustrates a system that depicts the automatic translation of slides being presented according to one embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 1 depicts a simplified block diagram 100 of a system for capturing information used to determine actions to be performed according to one embodiment of the present invention. It will be apparent that system 100 as depicted in FIG. 1 is merely illustrative of an embodiment incorporating the present invention and does not limit the scope of the invention as recited in the claims. One of ordinary skill in the art will recognize other variations, modifications, and alternatives.

A presentation driver device 102 and a display device 104 are used to output slides and other information that may be stored in a source document 108 or a symbolic presentation file. For example, slides from a Powerpoint™ (PPT) presentation may be output and displayed on display device 104. In one embodiment, the term “source document” as used in this application is intended to refer to any document stored in electronic form. For example, a document that is created using an application program and whose contents or portions thereof may be a source document. Source documents
may be scanned documents, a PDF version of a document, an image of a document, etc. The contents of source document 108 may include slides, images, text information, etc. A source document may comprise one or more portions. For example, a PPT document may comprise one or more pages. Each page of a PPT document may comprise one or more slides. The portions of source document 108 will be referred to as slides for discussion purposes but it will be understood that a slide may also be one or more images, one or more pages of a document, etc. Source document 108 may be created using one or more application programs. For example, a PPT document may be created using an application program, such as Microsoft’s PowerPoint™. Source document 108 is an electronic document that may be manipulated and edited using the application program that created it, or any other program.

In one embodiment, source document 108 is different than a captured image of a slide, which has not been created by an application program and is often not directly editable by the application program. For example, a PPT document comprising one or more slides created using a PowerPoint™ application program can be easily edited by the PowerPoint™ application. In contrast, a joint photography group (JPG) image of the displayed slide is not created by the PowerPoint™ application but is recorded information. Although a PPT document may contain JPEG images, the JPEG images are included in a slide created by a PPT application.

When a slide of source document 108 is displayed on display device 104, it is referred to as an outputted slide 106. For example, outputted slide 106 is a slide or image from source document 108 that has been outputted and displayed.

While a presenter is giving a presentation, the presenter may display slides from source document 108 on display device 104. While a slide is being displayed on display device 104, the presenter will then often describe or explain the contents of the displayed slide. For example, the presenter may embellish on the text or images displayed in multimedia information, slide information, whiteboard information, and other types of information. For example, a video recording of presentation may comprise video information and/or audio information. In certain instances the video recording may also comprise close-captioned (CC) text information which comprises material related to the video information, and in many cases, is an exact representation of the speech contained in the audio portions of the video recording. Recorded information is also used to refer to information comprising one or more objects wherein the objects include information of different types. For example, objects included in recorded information may comprise text information, graphics information, animation information, sound (audio) information, video information, slides information, whiteboard images information, and other types of information.

In one embodiment, the recorded information may be stored in a multimedia document 114 in a database 115. Alternatively, the recorded information may be processed in real-time as it is captured. The term “multimedia document” as used in this application is intended to refer to any electronic storage unit (e.g., a file, a directory, etc.) that stores recorded information. Various different formats may be used to store the recorded information. These formats include various MPEG formats (e.g., MPEG 1, MPEG 2, MPEG 4, MPEG 7, etc.), MP3 format, SMIL format, HTML + TIME format, WMF (Windows Media Format), RM (Real Media) format, Quicktime format, Shockwave format, various streaming media formats, formats being developed by the engineering community, proprietary and customary formats, and others. Examples of multimedia documents 114 include video recordings, MPEG files, news broadcast recordings, presentation recordings, recorded meetings, classroom lecture recordings, broadcast television programs, papers, or the like.

A presentation recorder is a device that is able to capture information presented at a presentation. Various different types of information output during a presentation may be captured or recorded by capture devices 118 including audio information, video information, images of slides or photos, whiteboard information, text information, and the like. For purposes of this application, the term “presented” is intended to include displayed, output, spoken, etc. For purposes of this application, the term “capture device” is intended to refer to any device, system, apparatus, or application that is configured to capture or record information of one or more types. Examples of capture devices 110 include microphones, video cameras, cameras (both digital and analog), scanners, presentation recorders, screen capture devices (e.g., a whiteboard information capture device), symbolic information capture devices, etc. In addition to capturing the information, capture devices 110 may also be able to capture temporal information associated with the captured information.

A presentation recorder is a device that is able to capture information presented during a presentation, for example, by tapping into and capturing streams of information from an information source. For example, if a computer executing a PowerPoint™ application is used to display slides from a *.ppt file, a presentation recorder may be configured to tap into the video output of the computer and capture keyframes every time a significant difference is detected between displayed video keyframes of the slides. The presentation recorder is also able to capture other types of information such as audio information, video information, slides information, etc. The temporal information associated with the captured information indicating when the information was output or captured is then used to synchronize the different types of captured information. Examples of presentation recorders include a screen capture software application, a PowerPoint™ application that allows recording of slides and time elapsed for each slide during a presentation, presentation records described in U.S. application Ser. No. 09/728,560, filed Nov. 30, 2000, U.S. application Ser. No. 09/728,453, filed Nov. 30, 2000, and U.S. application Ser. No. 09/521,252, filed Mar. 8, 2000.

A symbolic information capture device is able to capture information stored in symbolic presentation documents that may be output during a presentation. For example, a symbolic information capture device is able to record slides presented at a presentation as a sequence of images (e.g., as JPEGs, BMPs, etc.). A symbolic information capture device may also be configured to extract the text content of the slides. For example, during a PowerPoint™ slide presentation, a symbolic information capture device may record the slides by capturing slide transitions (e.g., by capturing keyboard commands) and then extracting the presentation images based on these transitions. Whiteboard capture devices may include...
devices such as a camera appropriately positioned to capture contents of the whiteboard, a screen, a chart, etc.

According to embodiments of the present invention, information from the recorded information is used to determine actions to perform. For example, an image of a slide is captured and used to trigger an action.

In one embodiment, different criteria and actions associated with the criteria are associated with portions of a source document 108. In one embodiment, a criterion is associated with a portion of source document 108 when that criterion is satisfied when it is determined that the portion has been output during a presentation. The associated criterion may be satisfied when recorded information is compared to a portion of source document 108 and matching information is found. Although it is described that a criterion may be satisfied, it will be understood that multiple criteria may be satisfied when a portion of source document 108 is determined to match recorded information. The criteria and actions may be associated with portions of source document 108 using information embedded in source document 108 or information stored separately from source document 108.

When a criterion is satisfied, the associated action is then performed. In one example, the criterion may indicate that an action should be performed when recorded information is compared to and matches a portion of source document 108. When a slide from document 108 is output and displayed, an image of the slide is captured as recorded information. The recorded information is compared to find a match to information in a source document 108. When a match is determined, the criterion has been satisfied. A corresponding action for the criterion is then performed.

FIG. 2 is a simplified block diagram of a data processing system 200 that may incorporate an embodiment of the present invention. As shown in FIG. 2, data processing system 200 includes at least one processor 202, which communicates with a number of peripheral devices via a bus subsystem 204. These peripheral devices may include a storage subsystem 206, comprising a memory subsystem 208 and a file storage subsystem 210, user interface input devices 212, user interface output devices 214, and a network interface subsystem 216. The input and output devices allow user interaction with a data processing system 202.

Network interface subsystem 216 provides an interface to other computer systems, networks, and storage resources 204. The networks may include the Internet, a local area network (LAN), a wide area network (WAN), a wireless network, an intranet, a private network, a public network, a switched network, or any other suitable communication network. Network interface subsystem 216 serves as an interface for receiving data from other sources and for transmitting data to other sources from data processing system 200. For example, images may be received by the interface via network interface subsystem 216. Embodiments of network interface subsystem 216 include an Ethernet card, a modem (telephone, satellite, cable, ISDN, etc.), (asynchronous) digital subscriber line (DSL) units, and the like.

User interface input devices 212 may include a keyboard, pointing devices such as a mouse, trackball, touchpad, or graphics tablet, a scanner, a barcode scanner, a touchscreen incorporated into the display, audio input devices such as voice recognition systems, microphones, and other types of input devices. In general, use of the term “input device” is intended to include all possible types of devices and ways to input information to data processing system 200.

User interface output devices 214 may include a display subsystem, a printer, a fax machine, or non-visual displays such as audio output devices. The display subsystem may be a cathode ray tube (CRT), a flat-panel device such as a liquid crystal display (LCD), or a projection device. In general, use of the term “output device” is intended to include all possible types of devices and ways to output information from data processing system 200.

Storage subsystem 206 may be configured to store the basic programming and data constructs that provide the functionality of the present invention. For example, according to an embodiment of the present invention, software modules implementing the functionality of the present invention may be stored in storage subsystem 206. These software modules may be executed by processor(s) 202. Storage subsystem 206 may also provide a repository for storing data used in accordance with the present invention. For example, the images to be compared including the input image and the set of candidate images may be stored in storage subsystem 206. Storage subsystem 206 may comprise memory subsystem 208 and file/disk storage subsystem 210.

Memory subsystem 208 may include a number of memories including a main random access memory (RAM) 218 for storage of instructions and data during program execution and a read only memory (ROM) 220 in which fixed instructions are stored. File storage subsystem 210 provides persistent (non-volatile) storage for program and data files, and may include a hard disk drive, a floppy disk drive along with associated removable media, a Compact Disk Read Only Memory (CD-ROM) drive, an optical drive, removable media cartridges, and other like storage media.

Bus subsystem 204 provides a mechanism for letting the various components and subsystems of data processing system 202 communicate with each other as intended. Although bus subsystem 204 is shown schematically as a single bus, alternative embodiments of the bus subsystem may utilize multiple busses.

Data processing system 200 can be of varying types including a personal computer, a portable computer, a workstation, a network computer, a mainframe, a kiosk, or any other data processing system. Due to the ever-changing nature of computers and networks, the description of data processing system 200 depicted in FIG. 2 is intended only as a specific example for purposes of illustrating the preferred embodiment of the computer system. Many other configurations having more or fewer components than the system depicted in FIG. 2 are possible.

FIG. 3 depicts a simplified flow chart 300 of a method for using recorded information and portions of a source document to determine actions to perform according to an embodiment of the present invention. The method may be performed by software modules executed by a data processing system, by hardware modules, or combinations thereof. Flow chart 300 depicted in FIG. 3 is merely illustrative of an embodiment incorporating the present invention and does not limit the scope of the invention as recited in the claims. One of ordinary skill in the art would recognize variations, modifications, and alternatives.

In step 302, recorded information is accessed. In one embodiment, recorded information may be captured while a presentation is being given. For example, images of outputted slides of a source document 108 are captured as the outputted slides are outputted and displayed. In another embodiment, recorded information may be determined from stored information in a multimedia document 114. Recorded information may be stored in various forms and may be stored in a multimedia document 114. Recorded information may comprise images of slides that were captured during a presentation. The recorded information can include information of various types such as audio information, video information, images,
keystroke information, etc. A keystroke or voice command may indicate that a certain slide (e.g., a page or slide number) has been displayed or that the next slide has been displayed. For example, a keystroke may specify a slide number (e.g., the number "9" for slide 9) or indicate that a next slide has been displayed. If the keystroke indicates that a next slide has been displayed, the slide in source document 108 that corresponds to the next slide is determined. A voice command can be interpreted in the same way as a keystroke. For example, a voice command may specify a slide number or may specify that a next slide should be displayed.

In step 304, one or more source documents 108 are determined. For discussion purposes, it will be assumed that one source document 108 is determined but any number of source documents 108 may be determined. In one embodiment, source document 108 may be determined using the recorded information accessed in step 302. For example, the recorded information is used to determine source document 108 from a plurality of source documents 108. Information from the recorded information is compared to information stored in source documents 128. Based upon the comparison, the recorded information may include information that matches information in source document 108. If information in the source document matches information in the recorded information, that source document 108 is determined. For example, a slide in a source document 108 may be outputted and displayed and an image of that outputted slide is captured as recorded information. The image in the recorded information can then be matched to information (e.g., an image) in source document 108. Accordingly, source document 108 with the matched image is determined. In other embodiments, recorded information may be a keystroke, a voice command, or other information that may be used to identify a source document 108. For example, the keystrokes may identify a source document being presented, etc. For example, information identifying a source document 108, such as a filename, may be received as a keystroke.

In step 306, a portion of source document 108 determined in step 304 is then determined. In one embodiment, a portion of source document 108 may be a slide that matches information in the recorded information (e.g., an image of the outputted slide). A person skilled in the art will appreciate many methods for matching recorded information with a portion of the source document 108. In one embodiment, image matching techniques disclosed in U.S. patent application Ser. No. 10/412,757, filed on Apr. 11, 2003, entitled "Automated Techniques For Comparing Contents Of Images" may be used and is hereby incorporated by reference for all purposes. For example, an input image (e.g., recorded information) is matched to a set of potential candidate images. The set of candidate images may be slides in source document 108. The extracted images may include keyframes extracted from video information, images captured during a presentation, etc. For each portion of recorded information, images extracted from the recorded information that are included in the information are used as input images.

In another example, the portion of source document 108 may be determined using an identifier for the slide in source document 108. A page number from an image may be recognized in the recorded information. That page number is then used to identify a portion of source document 108. For example, the slide of source document 108 that corresponds to the page number is determined. In other embodiments, the page number may be determined from a key stroke or voice command instead of being recognized in an image.

In step 308, embodiments of the present invention determine if a criterion is satisfied. A criterion may be dependent on any number of factors. For example, a criterion may be satisfied if a portion of source document 108 determined in step 304 is compared to recorded information to determine matching information in the recorded information. For example, recorded information may comprise an image that matches a slide from source document 108. Also, the recorded information may include a keystroke indicating a slide number that matches a slide number in source document 108. When the captured image of the slide matches a portion of source document 108, the criterion has been satisfied.

Information specifying the criteria can be stored with source document 108 or stored separately. In one embodiment, the criterion is associated with source document 108 in that the criterion is satisfied when a portion of source document 108 is determined using recorded information. Also, other information may be used to determine that a criterion has been satisfied, such as metadata associated with or extracted from source document 108 or the recorded information; other documents that are relevant to source document 108 or the recorded information; metadata that identifies a user, source document 108, or recorded information; an agenda, or any other information that may be used to determine if the criterion is satisfied.

In step 310, an action associated with the criterion is determined. Examples of actions include translating a slide in source document 108, retrieving a translated slide corresponding to an outputted slide from source document 108, sending an e-mail, placing an automatic telephone call, initiating a streaming video connection, etc. A data structure, such as a table, that includes different criteria and actions may be associated with source document 108. When the portion of source document 108 is compared to recorded information and matches information in the recorded information, the table is accessed and searched to determine a criterion that specifies the matched portion of source document 108. A corresponding action corresponding to the criterion may then be performed.

In step 312, the action is performed. In one embodiment, the action may be performed on the determined portion of source document 108. For example, the action is translating text in the portion of source document 108. Other actions may also be triggered, such as sending information to a device. For example, the translated slide may be sent to a device, a notification may be sent to a device, etc.

Accordingly, actions are determined and triggered based on criteria. The criteria may be satisfied when certain events occur. For example, an event may be when a slide from source document 108 is outputted and presented and captured as recorded information. When the recorded information is compared to and matched with information in source document 108, an action is determined and performed.

FIG. 4 illustrates a simplified block diagram of a system 400 for performing actions using recorded information and information from a source document 108 according to one embodiment of the present invention. System 400 includes an information processor 402, a criteria determiner 404, and an action performer 406.

Information processor 402 is configured to identify, based upon the recorded information, one or more source documents 108 from a plurality of source documents whose portions were presented and captured during a presentation. Information processor 402 is then configured to identify portions of the identified source documents based upon the recorded information. A database 408 may store any number of source documents 108. Information processor 402 determines a source document 108 from the stored source documents 108 and a portion of the determined source document.
translated by a user.
translated slides are retrieved and saved to the file. A user can then view the translated version of the slides for the presentation at a later time.

In another example, information in an agenda may be used to determine actions to perform. When an agenda item is displayed and captured as recorded information, a notification that the agenda item is being discussed is sent.

While the present invention has been described using a particular combination of hardware and software implemented in the form of control logic, it should be recognized that other combinations of hardware and software are also within the scope of the present invention. The present invention may be implemented only in hardware, or only in software, or using combinations thereof.

The above description is illustrative but not restrictive. Many variations of the invention will become apparent to those skilled in the art upon review of the disclosure. The scope of the invention should, therefore, be determined not with reference to the above description, but instead should be determined with reference to the pending claims along with their full scope or equivalents.

What is claimed is:

1. A method for providing translated information, the method comprising:
   - accessing recorded information, the recorded information including information recorded during a presentation of source information;
   - comparing the recorded information to a source document, the source document being separate from the recorded information and being determined to include information corresponding to at least a portion of the source information presented during the presentation;
   - determining whether a portion of the source document corresponds to a portion of the recorded information, such that a criterion is satisfied; and
   - when the criterion is satisfied, communicating a translated version of the portion of the source document to at least one device, whereby the at least one device is operable to display the translated version of the source document while accessing the portion of the accessed recorded information.

2. The method of claim 1, wherein the information in the recorded information comprises an image of information outputted from the source document.

3. The method of claim 2, wherein determining the source document comprises comparing an image in the source document to the image of information outputted from the source document to determine if the image in the source document matches the image of information outputted from the source document.

4. The method of claim 1, wherein the information from the source document comprises an image.

5. The method of claim 1, wherein determining if the criterion is satisfied comprises:
   - associating information from the recorded information with the information in the source document; and
   - associating the information in the source document with information for the criterion.

6. The method of claim 1, wherein the information associated with the source document is embedded in the source document.

7. The method of claim 1, wherein the recorded information comprises information identifying the information in the source document that has been outputted.

8. The method of claim 1, wherein the recorded information comprises an identifier, wherein the identifier is used to determine the information in the source document.

9. A method for providing translated information, the method comprising:
   - accessing a first piece of information in recorded information, the recorded information including information recorded during a presentation of source information;
   - comparing the first piece of information to a source document, the source document being separate from the recorded information and being determined to include information corresponding to at least a portion of the source information presented during the presentation;
   - determining whether information in the source document corresponds to the first piece of information in the recorded information, such that a criterion is satisfied; and
   - when the criterion is satisfied, communicating a translated version of the information in the source document to at least one device, whereby the at least one device is operable to display the translated version of the source document while accessing the accessed recorded information.

10. The method of claim 9, wherein the first piece of information comprises an image of a slide.

11. The method of claim 9, wherein the information in the source document comprises an image of a slide.

12. The method of claim 9, wherein determining if the criterion is satisfied comprises using the information in the source document specifying the criterion to determine if the criterion is satisfied.

13. The method of claim 9, wherein the information associated with the source document is embedded in the source document.

14. The method of claim 9, wherein the recorded information comprises information identifying the information in the source document that has been outputted.

15. The method of claim 9, wherein the recorded information comprises an identifier, wherein the identifier is used to determine the information in the source document.

16. A method for determining translated slides of source document slides in a source document, the method comprising:
   - accessing recorded information, the recorded information including information recorded during a presentation of source information from at least one source document separate from the recorded information;
   - comparing a source document slide in the at least one source document to an image contained in the recorded information, a criterion being satisfied if the source document slide corresponds to the image; and
   - communicating a translated slide to a device when the criterion is satisfied, the translated slide including a translated version of at least a portion of the source document slide, whereby the device is operable to display the translated slide while accessing the portion of the accessed recorded information.

17. The method of claim 16, wherein determining the translated slide comprises translating text of the source document slide to generate the translated slide.

18. The method of claim 16, wherein determining the translated slide comprises:
   - determining a storage location of the translated slide; and
   - retrieving the translated slide from the storage location.

19. The method of claim 16, wherein communicating the translated slide to a device comprises causing the translated slide to be displayed on the device.

20. The method of claim 16, wherein communicating the translated slide to a device comprises storing the translated slide.
21. The method of claim 16, wherein the recorded information comprises an image of an outputted source document slide.

22. The method of claim 21, wherein determining the source document slide comprises comparing the image of the outputted source document slide to information in the source document slide to determine if the image of the outputted source document matches the information in the source document slide.

23. The method of claim 21, wherein the recorded information comprises information indicating that the source document slide in the source document has been outputted.

24. The method of claim 21, wherein the recorded information comprises a slide number, wherein the slide number is used to determine the source document slide.

25. A data processing system for providing translated information, the data processing system comprising:

a processor;

a memory coupled to the processor, the memory configured to store a plurality of code modules for execution by the processor, the plurality of code modules comprising:

code module for accessing recorded information, the recorded information including information recorded during a presentation of source information;

code module for comparing the recorded information to a source document, the source document being separate from the recorded information and being determined to include information corresponding to at least a portion of the source information presented during the presentation;

code module for determining whether a portion of the source information in the source document corresponds to a portion of the recorded information, such that a criterion is satisfied; and

code module for communicating a translated version of the portion of the source information in the source document to a device when the criterion is satisfied, whereby the device is operable to display the translated version of the source document while accessing the accessed recorded information.

26. The data processing system of claim 25, wherein the information in the recorded information comprises an image of information outputted from the source document.

27. The data processing system of claim 26, wherein the code module for determining the source document comprises a code module for comparing an image in the source document with the image of information outputted from the source document to determine if the image in the source document matches the image of information outputted from the source document.

28. The data processing system of claim 26, wherein the code module for determining if the criterion is satisfied comprises:

code module for associating information from the recorded information with the information in the source document; and

code module for associating the information in the source document with information for the criterion.

29. The data processing system of claim 28, wherein the information associated with the source document is embedded in the source document.

30. The data processing system of claim 26, wherein the recorded information comprises information identifying the information in the source document that has been outputted.

31. The data processing system of claim 26, wherein the recorded information comprises an identifier, wherein the identifier is used to determine the information in the source document.

32. The data processing system of claim 25, wherein the information from the source document comprises an image.

33. A data processing system for providing translated information, the data processing system comprising:

a processor;

a memory coupled to the processor, the memory configured to store a plurality of code modules for execution by the processor, the plurality of code modules comprising:

code module for accessing a first piece of information in recorded information, the recorded information including information recorded during a presentation of source information;

code module for comparing the first piece of information to a source document, the source document being separate from the recorded information and being determined to include information corresponding to at least a portion of the source information presented during the presentation;

code module for determining whether information in the source document corresponds to the first piece of information in the recorded information, such that a criterion is satisfied; and

code module for communicating a translated version of the information in the source document to the display device when the criterion is satisfied, whereby the device is operable to display the translated version of the source document while accessing the accessed recorded information.

34. The data processing of claim 33, wherein the first piece of information comprises an image of a slide in the source document.

35. The data processing of claim 33, wherein the information in the source document comprises an image of a slide.

36. The data processing of claim 33, wherein the code module for determining if the criterion is satisfied comprises a code module for using the information in the source document specifying the criterion to determine if the criterion is satisfied.

37. The data processing of claim 36, wherein the information associated with the source document is embedded in the source document.

38. The data processing of claim 33, wherein the recorded information comprises information identifying the information in the source document that has been outputted.

39. The method of claim 33, wherein the recorded information comprises an identifier, wherein the identifier is used to determine the information in the source document.

40. A data processing system for determining translated slides of source document slides in a source document, the data processing system comprising:

a processor;

a memory coupled to the processor, the memory configured to store a plurality of code modules for execution by the processor, the plurality of code modules comprising:

code module for accessing recorded information, the recorded information including information recorded during a presentation of source information from at least one source document separate from the recorded information;

code module for comparing a source document slide in the at least one source document to an image con-
the information in the recorded information comprises an identifier, wherein the identifier is associated with the source document slide.

41. The data processing system of claim 40, wherein the code module for accessing a first piece of information in recorded information includes code for retrieving the translated slide from the storage location.

42. The data processing system of claim 40, wherein the code module for accessing a first piece of information in recorded information includes code for determining if the criterion is satisfied comprises: 15 code for associating information from the recorded information with the information in the source document; and code for associating the translated slide with the information in the source document.

43. The data processing system of claim 40, wherein the code module for accessing a first piece of information in recorded information comprises code for determining whether a portion of the source document slide corresponds to a portion of the recorded information, such that a criterion is satisfied, and code for communicating translated information to a device when the criterion is satisfied, the translated information including a translation of at least a portion of the source document, whereby the device is operable to display the translated information while accessing the portion of the accessed recorded information.

44. The data processing system of claim 40, wherein the code module for accessing a first piece of information in recorded information comprises code for using the information in the source document specified in the criterion to determine if the criterion is satisfied.

45. The data processing system of claim 40, wherein the code module for accessing a first piece of information in recorded information comprises code for accessing the first piece of information in recorded information, the recorded information including information recorded during a presentation of source information; code for comparing the first piece of information to a source document, the source document being separate from the recorded information and being determined to include information corresponding to at least a portion of the source information presented during the presentation; code for determining whether information in the source document corresponds to the first piece of information in the recorded information, such that a criterion is satisfied; and code for communicating translated information to a device when the criterion is satisfied, the translated information including a translation of at least a portion of the source information, whereby the device is operable to display the translated information while accessing the portion of the accessed recorded information.

46. The data processing system of claim 45, wherein the code module for accessing a first piece of information in recorded information comprises code for matching an image in the source document with the image of information outputted from the source document to determine if the image in the source document matches the image of information outputted from the source document.

47. The data processing system of claim 45, wherein the code module for accessing a first piece of information in recorded information comprises code for associating information from the recorded information with the information in the source document, such that a criterion is satisfied, and code for communicating translated information to a device when the criterion is satisfied, the translated information including a translation of at least a portion of the source information, whereby the device is operable to display the translated information while accessing the portion of the accessed recorded information.

48. The data processing system of claim 47, wherein the code module for accessing a first piece of information in recorded information comprises code for associating information from the recorded information with the information in the source document, such that a criterion is satisfied, and code for communicating translated information to a device when the criterion is satisfied, the translated information including a translation of at least a portion of the source information, whereby the device is operable to display the translated information while accessing the portion of the accessed recorded information.

49. A computer program product stored on a computer-readable storage medium and including executable instructions for providing translated information, the computer program product comprising:

- code for accessing a first piece of information in recorded information, the recorded information including information recorded during a presentation of source information;
- code for comparing the first piece of information to a source document, the source document being separate from the recorded information and being determined to include information corresponding to at least a portion of the source information presented during the presentation;
- code for determining whether information in the source document corresponds to the first piece of information in the recorded information, such that a criterion is satisfied; and
- code for communicating translated information to a device when the criterion is satisfied, the translated information including a translation of at least a portion of the source information, whereby the device is operable to display the translated information while accessing the portion of the accessed recorded information.

50. The computer program product of claim 49, wherein the first piece of information comprises an image of a slide.
63. The computer program product of claim 62, wherein the information associated with the source document is embedded in the source document.

64. The computer program product of claim 57, wherein the recorded information comprises information identifying the information in the source document that has been outputted.

65. The computer program product of claim 57, wherein the recorded information comprises an identifier, wherein the identifier is used to determine the information in the source document.

66. A computer program product stored on a computer-readable storage medium and including executable instructions for determining translated slides of source document slides in a source document, the computer program product comprising:

- code for accessing recorded information, the recorded information including information recorded during a presentation of source information from at least one source document separate from the recorded information;
- code for comparing a source document slide in the at least one source document to an image contained in the recorded information, a criterion being satisfied if the source document slide corresponds to the image; and
- code for communicating a translated slide to a device when the criterion is satisfied, the translated slide including a translation of at least a portion of the source document slide, whereby the device is operable to display the translated slide while accessing the portion of the accessed recorded information.

67. The computer program product of claim 66, wherein the code for determining the translated slide comprises:

- code for determining a storage location of the translated slide; and
- code for retrieving the translated slide from the storage location.

68. The computer program product of claim 66, wherein the recorded information comprises an image of an outputted source document slide.

69. The computer program product of claim 68, wherein the code for determining the source document slide comprises:

- code for comparing the image of the outputted source document slide to information in the source document slide to determine if the image of the outputted source document slide matches the information in the source document slide.

70. The computer program product of claim 66, wherein the recorded information comprises information indicating that the source document slide in the source document has been outputted.

71. The computer program product of claim 66, wherein the recorded information comprises a slide number, wherein the slide number is used to determine the source document slide.

* * * * *