
HYIWI’I-ESIS TESTING IN A COMPUTATI0NAL THEORY OF
VISUAL WORD RECOGMTION

Jonathan J. Hull

Department of Computer Science
State University of New York at Buffalo

Buffalo, New York 14260
hull@cs.buff alo.edu

ABSTRACT

A computational theory of reading and an algorithmic real-
ization of the theory is presented that illustrates the application
of the methodology of a computational theory to an engineering
problem. The theory is based on past studies of how people read
that show there are two steps of visual processing in reading and
that these steps are influenced by cognitive processes. This paper
discusses the development of a similar set of algorithms. A gross
visual description of a word is used to suggest a set of hypotheses
about its identity. These then drive further selective analysis of
the image that can be altered by knowledge of language charac-
teristics such as syntax. This is noS a character recognition algo-
rithm since an explicit segmentation of a word and a recognition
of its isolated characters is avoided. This paper presents a unified
discussion of this methodology with a concentration on the
second stage of selective image analysis. An algorithm is
presented that determines the minimum number of tests that
have to be programmed under the constraint that the minimum
numberqf tests are to be executed. This is used to compare the
proposed technique to a similar character recognition algorithm.

1. Introduction

The fluent reading of text by computer without human
intervention remains an elusive goal of Artificial Intelligence
research. Fluent reading is the transformation of an arbitrary
page of text, that could contain a mixture of machine-printed,
hand-printed, or handwritten text, from its representation as a
two-dimensional image into a form understandable by a com-
puter, such as ASCII code. The current lack of a technique with
these capabilities is interesting in light of the relative ease with
which people read and the many years of investigation into com-
puter reading algorithms, the methods people use to read text,
and the long history of Artificial Intelligence research into com-
puter vision [12].

The parallel between algorithms for reading text and expla-
nations for human performance is most interesting. With some
notable exceptions, most reading algorithms use a character
recognition approach in which words are segmented into isolated
characters that are individually recognized. For these algorithms
reading is equivalent to a sequence of character recognitions.

The way people read is significantly different from charac-
ter recognition. We bring to reading a wealth of information
about the world and expectations about what we will read. This
is mixed with knowledge about how text is arranged on a page,
knowledge of the syntax and semantics of language, and visual
knowledge about letters and words. The recognition processes
that take place during fluent reading use visual information
from much more than just isolated characters. Whole words or
groups of characters are recognized by processes, that in some
cases, do not even require detailed visual processing. This is

because fluent human reading uses many knowledge sources to
develop an understanding of a text while it is being recognized.
This integration of understanding and recognition is responsible
for human performance in fluent reading.

The fact that few reading algorithms have utilized the
many disparate knowledge sources or the recognition strategy of
a human reader might explain the gap between the reading
proficiency of algorithms and people. Although some character
recognition techniques have been augmented with knowledge
about words, no reading algorithm has been proposed that fully
utilizes the sorts of knowledge routinely employed by a human
reader [ll]. Such an algorithm would have the potential of
yielding substantial improvements in performance.

2. A Computational Theory and Algorithm for Reading
The mechanism of a computational theory and its algo-

rithm are chosen as the vehicle for the present investigation of
reading because reading is an information processing task to
which this mechanism applies [9]. The proposed computational
theory of reading is based on previous studies of human perfor-
mance. It shows what is computed by people when they read,
why this is important, and general guidelines of how this should
be carried out. Since reading is a complex information processing
task involving interactions of knowledge from many different
sources, algorithms are developed that implement only a subset
of these interactions. However, these algorithms are sufficient to
illustrate that if the complete version of the theory were imple
mented, a robust “reading machine” would result.

The computational theory of reading proposed here IS
derived from work on human reading that includes studies of
human eye movements [lo]. To a person who reads a line of
text, it seems to them as if their eyes move smoothly from left to
right. However, this is not completely true. In reality, our eyes
move in ballistic jumps called saccades from one Jxation point
to the next. During a saccade the text is blurred and unreadable.
(This is not apparent to the reader.) Therefore, most of the visual
processing of reading takes place during the fixations. Usually
there are about one to three fixations near the beginning of the
word. However, interestingly enough, some words are never
fixated. The sequence of fixations is approximately from left to
right across a line of text, however, regressions do occur fre-
quently. Figure 1 shows the sequence of fixations in a line of
text [l].

There are two types of visual processing in reading. In the
first type of processing, information from peripheral vision pro-
vides a gross visual description of words to the right of the
current fixation point. This information is used to form expecta-
tions about the words. The second stage of processing occurs on
a subsequent fixation when these expectations are integrated with
other visual information.

718 Vision

From: AAAI-87 Proceedings. Copyright ©1987, AAAI (www.aaai.org). All rights reserved.

ADMIRAL KAZNAKBFF, A Ml%BER OF THE

2 3

The testing sequence is structured as a tree that specifies the order
and locations in which tests are performed. The result of a test
determines successive tests and reduces the number of words that
could match the input image.

It is assumed that the input image contains a word in the
neighborhood. This constrains the features that could occur at
locations in the image. If a set of features are defined a-priori,
this constraint determines the subset that could be present. The
features used in this paper for hypothesis testing are shown
below: Figure 1. Sequence of fixations in a line of text [I].

The visual processing is influenced by many high-level fac-
tors that include the reason a person is reading the passage of
text, as well as the familiarity of the reader with the subject and
his or her skill level. A more skilled reader uses visual informa-
tion more economically than a less skilled one [3]. That is, a
skilled reader uses less visual processing than a poor reader.
Recent work has also shown that syntactic processing also
influences the visual processing of a text [2].

The proposed computational theory of reading contains
three stages that are similar to those of human reading. The first
stage generates hypotheses about words from a gross visual
description. This is similar to the visual processing of words to
the right of a fixation point and is an essential component of one
theory of human reading [4]. The second stage uses these
hypotheses to determine a feature testing sequence that can be
executed on the image to recognize the word. This sequence is
adaptable to different high-level influences and can be executed at
different physical locations in the word. This stage is similar to
the detailed visual processing that takes place at a fixation. The
third stage of the theory concerns high-level processing. This
stage captures the influence of the various non-visual processes
that influence reading such as syntax and semantics. These
processes remove word-hypotheses from consideration that do not
agree with the high-level constraints. This is a way to represent
the influence of many high-level knowledge sources.

The remainder of this paper discusses algorithms that
implement two of the three stages outlined above. A hypothesis
generation procedure is briefly presented. A global contextual
analysis procedure is not fully discussed here. Instead, the reader
is referred to a technique that uses knowledge about transitions
between words to improve the performance of the hypothesis
testing portion of this algorithm [5]. A hypothesis testing com-
ponent is fully presented and an algorithm is discussed that
determines the minimum number of feature tests needed by this
component.

3. Hypothesis Generation
The hypothesis generation component of the algorithm uses

a description of the gross visual characteristics of a word image
to index into a dictionary and retrieve a subset of words called a
neighborhood that have the same description. The description is
the left-to-right sequence of occurrence of a small number of
features. The features are simple and easy to extract to increase
the reliability of the technique in the presence of noise. This
approach is suitable for generating hypotheses about an input
word since a small number of features can partition a large dic-
tionary into a limited number of small neighborhoods [6]. This is
less error-prone than using many features to carry out complete
recognition.

4. Hypothesis Testing
The hypothesis testing component of the algorithm uses the

words in a neighborhood to determine a feature testing sequence.

feature
code

E

6

10
EE

description

empty space;
closed at both the top and bottom, e.g. “0”;

closed at the top, e.g. “n”;
closed at the bottom, e.g. “u”;

left of a short vertical bar m an “a”
right of a short vertical bar m a “c”
right of the short vertical bar in “en
right of a long vertical bar m an “f”

between two short vertical bar in a “g”
right of a long vertical bar in a “k”

right of a short vertical bar in an “r”
large empty space containing one of { s,v,wx,yz 1.

A discrimination test decides which member of a subset of
these features is present at a given location. A list is used to
show the features discriminated by a test. For example, (1 2) is a
test that discriminates between feature 1 (closed at both the top
and bottom) and feature 2 (closed at the top). The locations used
by hypothesis testing are the areas between the features
discovered by the neighborhood calculation. Several of the
hypothesis testing features can be adjacent to one another in these
locations. For example, in the sequence “ba”, the area between
the short vertical bar in the “b” and the short vertical bar in the
“a” contains the hypothesis testing feature E4.

An example is shown in Figure 2 of how the discrimina-
tion tests are arranged in a tree. The hypothesis generation pro-
cedure determined that there were four features in the input
word and four locations (1 through 4) between those features at
which a discrimination test could be applied. The features of the
hypothesis generation stage are numbered 2110 in the second line
of Figure 2. The 2 refers to an ascender, the l’s to short vertical
bars, and the 0 the a significant vertical space that does not con-
tain a vertical bar. These are all present in the same sequence in
the neighborhood { be, has, he >.

The nodes at the first level of the tree are the tests that
could be applied at each of the four locations. The result of a
test either determines a recognition or the next set of tests that
could be applied. In Figure 2, if location 3 is considered and the
discrimination between features E and E4 is performed, has is
recognized if E4 is present. Otherwise, if E is present, the choices
are narrowed down to be or he. If feature 1 is then found in
position 2, be is recognized, Otherwise if feature 2 is found in
position 2, he is recognized.

Of particular interest are the shortest paths in a hypothesis
testing tree. These are paths from a top-level node to a terminal
node (all of its descendents are word decisions). A shortest path
contains the fewest tests needed to recognize the words in a
hypothesis testing tree. There are four shortest paths in Figure 2.
They are from position 2 tr position 3 (contains tests (1 2) and (E
E4)), position 2 to position 4 (contains tests (1 2) and (6E EE)),
position 3 to position 2 (contains tests (1 2) and (E E4)), and from
position 4 to position 2 (contains tests (1 2) and (6E EE)). There-
fore, there are two different mimimum sets of tests that can be
used to recognize the words in this tree. They are { (1 21, (E E4)
) and { (1 21, (6E EE) 1. Henceforth, a shortest path will also
mean the set of tests it contains.

Hull 719

(he, has, he >

his his be he be he

Figure 2. An example search tree for the neighbor-
hood { be, has, he) with visual description “2110” Each
node contains a position indicator “In” where n is one of
1 through 4. The test at each node is carried out by
discriminating between the features that follow the po-
sition indicator.

5. Minimum Number of Tests

It is of interest to determine the minimum number of
different tests that would have to be executed to recognize every
word in a given dictionary. (N.B. A dictionary is partitioned into
neighborhoods by the hypothesis generation stage. Each neighbor-
hood is in one-to-one correspondence with a hypothesis testing
tree.> This set of tests (called MT) contains the smallest set of
tests that would have to be programmed under the constraint
that the minimum number are to be executed. As such, it indi-
cates the computational effort needed to recognize the words in
the dictionary and gives us a way to compare this methodology
to other reading algorithms. The more efficient technique would
require fewer tests and thus would have a smaller MT.

Several of the issues involved in finding MT are illustrated
by the following example. The top 100 most frequent words in
the Brown Corpus were chosen and the testing trees for these
words were determined. The Brown Corpus is a text of over
l,OOO,OOO words that was designed to represent modern edited
American English [S]. Of the 100 most frequent words in the
Corpus, 55 are uniquely recognized by the hypothesis generation
computation. The other 45 words are contained in 16 trees.
These words are shown in Figure 3 along with the tests on the
shortest paths in their trees.

A shortest path is shown as a list of tests and a tree is
represented by a list of the shortest paths it contains. In this
example, there are as few as one (trees 5, 8,10-13, and 16) and as
.nany as eleven different shortest paths (tree 7) in a testing tree.
Overall, there are 25 different tests on the 16 shortest paths in
Figure 3. They are:

(1 2) (E ~4) (6~ EE) (EE ~4) (1 E ~4) (6~ EE E) (1 E)
(6~ E> (EE EEL E4) (6~ 6~4) (10~ E) (10~ 6E) (10~ 2)
(6~ 6~4 E) (10~ 2 E) (10~ 6E EE) (6EE 6E) (EE E)
;;$6E$ EE) (1 2 5E4 6EE) (1 6E E E4) (1 3) (2 3) (1 3 E)

The objective is to choose the smallest subset of these tests that
contains the tests on at least one of the shortest paths in each
tree.

tree W0d.S shortest paths
1 be, has, he (((1 2) (E ~4)) ((1 2) (6~ EEN)
2 have, her, for (((1 E E4)) ((6~ EE EN)
3 what, who (((E E4)) ((1 E)))
4 well, all NEE E4N ((6~ EN
5 was, way, we, as (((EE EE4 E4)))
6 so, at NEE E4N ((1 ENI
I years, were, are, any (((6E 6E4) (EE E4)) ((1OE E) (EE E4))

Ki0EE 6~) GE ~4)) ((10~ 2) (EE 1~41)
((6~ EE) (EE ~4)) ((10~ 2) (6~ 6E4 EN
((6~ 6~4 E) (6~ EE)) ((10~ 2 E) (EE 1~41)

((10~ 2 E) (6~ EN ((IOEE 6~ EE) (EE ~4))
((i0EE 6E EE) (6~ 2)))

8 they, the (((6EE 6E)))
9 down, than, then (((1 E E4)) ((6~ EE EN
10 two, to (((EE EN)
11 or, my, new (((1OE 6EE EE)))
12 on, no, can, even (((1 2 5E4 6EE)))
13 me, may, now, over (((1 6E E E4)))
14 out, not (((1 2)) ((1 3)))
15 one, our (((2 3)) ((1OE 6E)))
16 man, most, must (((1 3 E)))

Figure 3. The shortest paths in the testing trees for the 16
neighborhoods computed from the top 100 most frequent words
in the Brown Corpus.

The brute force algorithm for this is to evaluate every pos-
sible subset and determine if the tests in it can solve every tree.
However, this is obviously unsuitable because of an exponential
complexity. Therefore, an approach is needed that reduces the
computation. An algorithm is proposed here that achieves this
objective.

The algorithm takes the shortest paths from a number of
trees as input (Figure 3 is an example). It iteratively adds the
tests on a shortest path to the solution set (initially empty) until
it contains the tests that can be used to recognize the words in
every tree. The solution set is then output. It should be koted
that all the tests on one of the shortest paths in each tree must be
in the solution. Otherwise, the words in that tree could not be
recognized. For example, in tree one of Figure 3, either both (1 2)
and (E E4) or both (1 2) and (6E EE) must be in the solution. A
more precise description of the algorithm is:

(1).

(2).

(3).

(4).

Algoyithm:
Take the union of the shortest paths,

Determine the number of trees that are solved by
the tests in each shortest path. (Solving a tree is
equivalent to having the tests on one of its shortest
paths in the solution.)

Find the shortest paths that contain the most tests
and solve the maximum number of trees; in the
above example there are eight shortest paths that
contain two tests and solve three trees. For exam-
ple, tests (1 2) and (E E4) solve trees 1, 3, and 14;
(6E 6E4) and (EE E4) solve trees 4,6 and 7, etc.

Add the tests from one of the shortest paths
discovered in step 3 to the solution. Remove the
trees that are solved from consideration. Derive a
reduced set of shortest paths by removing tests
that are in the solution.

720 Vision

(5). If such a reduction yields an empty set of shortest
paths, output the tests in the solution. Stop only
if one of the possibly many solutions is desired.
Otherwise continue with step one.

This algorithm must terminate because every reduction is
guaranteed to produce a smaller set of shortest paths. There are
16 different solutions to the example set of shortest paths in Fig-
ure 3. Each solution contains 13 tests. One solution is:

(1 2) (E E4) (EE EE4 E4) (EE E4) (6E 6E4) (1 E E4) (2 3)
(6EE 6E) (EE E) (1OE 6EE EE) (1 2 5E4 6EE) (1 6E E E4)
(1 3E)

The 16 solutions to the example set of equations illustrates
that there may be many solutions that contain the minimum
number of tests. Choosing the “easiest” among them is largely a
matter of judgement and intuition. The algorithm could be
tuned to expand only the most promising paths, i.e., those that
early-on are found to contain “easy” tests.

A version of the above procedure was implemented that
found the first set of tests on a shortest path. This shows the
smallest number of tests that must be executed to recognize a
given vocabulary. This was applied to two vocabularies. The
first were subsets of the Brown Corpus determined by frequency.
The second were the subject categories or genres that make up the
Brown Corpus. These results are shown in Table 1.

These results are interesting because they show at most 347
different tests are needed to recognize the text in any subject
category of the Brown Corpus. The experiments that increased
dictionary size show a linear effect of the number of dictionary
words on the number of tests needed to recognize those words.
Usually, doubling the dictionary size increases the number of
tests by fifty percent. Another interesting result of this study is
the difference between genres. Only 184 tests are needed to
recognize the 34,495 words in genre D. This is very interesting
in comparison to the 220 tests needed to recognize nearly the
same number of words (35,466) in genre C, i.e., 36 more tests are
needed to recognize only 1000 more words. This could be attri-
butable to the difference in subject categories (genre C contains
press reviews and genre D contains religious material). However,
it is more likely due to the difference in the number of words in
the dictionaries of the genres. The dictionaries for genres C and D
contain 7751 words and 5733 words, respectively. Overall, the
results indicate that the hypothesis testing methodology is
economical and requires much fewer than the theoretical max-
imum of 212 tests to be programmed. In fact, so few tests are
needed that an implementation with high degrees of performance
should be achievable.

6. Comparison to Character Recognition

The reading algorithm proposed in this paper has been com-
pared to a character recognition algorithm of similar design [7].
This was done by designing a character recognition algorithm
that was comparable to the proposed reading algorithm and
determining the minimum number of tests needed by both
approaches.

The character recognition algorithm was designed to contain
both a hypothesis generation and a hypothesis testing phase. The
hypothesis generation stage was the same as that of the proposed
technique. Because a character recognition algorithm requires
that individual characters be isolated, an additional assumption
was made that the characters in the input words could be per-
fectly segmented and, thus, the number of characters in each
word could be determined. Therefore, the contents of each neigh-
borhood were constrained to be words with the same number of
characters.

The hypothesis testing phase of the character recognition
algorithm used the same design as the proposed technique. The
only difference was in the discrimination tests. They were
between-characters rather than between-features. This is the
point where the two methods differed. For example, in the
neighborhood { may, now > three character-discriminations were
possible: (m n>, (a 01, and (y w>. In contrast, the proposed tech-
nique would discriminate among the features that occur between
the vertical bars.

The character recognition algorithm can be summarized:

1. Assume that an input word can be perfectly segmented and
that it comes from a given, fixed vocabulary. Identify the
locations of each character.

2. Determine the neighborhood of the input word in the given
vocabulary. The same features and feature extraction pro-
cedure are used as in the proposed methodology except that
the neighborhood must contain words with the same
number of characters.

3. Use the proposed method of hypothesis testing to recognize
the input. Because this is a character recognition approach,
the discriminations are between characters that occur in the
positions specified by step 1.

One modification to the proposed method was needed to
make the neighborhoods calculated by the two methods the same.
The hypothesis generation algorithm used an additional parame-
ter of the number of characters in each word. Note that the
modification requires only that the number of characters in a
word be determined. This can be much easier than segmenting a
word into isolated characters.

diet. words of no. of
size text tests
50 413,565 6
loo 483,355 13
250 566,288 27
500 632,693 42
750 674,112 51

1000 705,045 61
2000 781,581 92
3000 827,178 128
4000 858,306 155

diet words of no. oi
Size text tests

5000 880,802 172
6000 898,145 197
7OQO 912,068 205
8OUO 923,358 223
9000 932,831 246

10,000 940,871 252
15,000 968,004 331
20,000 984,105 368
25,000 994,105 425 I -

genre

A
B
C
D
E
F
G

words of
text

88,051
54,662
35,466
34,495
72,529
97,658
152,662

no. of
tests
297
225
203
184
256
294
347

H 61,659 206

genre words of no. of
text tests

J 160,877 303
K 58,650 226
L 48,462 219
M 12,127 127
N 58,790 235
P 59,014 238
R 18,447 158

Table 1. The minimum number of tests that must be executed to recognize the indicated
vocabularies.

Hull 721

The minimum number of tests needed by the algorithm
proposed in this paper and the character recognition technique
were determined for the genres of the Brown Corpus. It was
discovered that the proposed algorithm would have to execute
from one percent to fourteen percent fewer tests to recognize the
same texts. However, from three percent to seven percent of the
running text could not be completely recognized by the proposed
technique. These were words where the hypothesis testing algo-
rithm could not reduce the neighborhood to a unique choice. Usu-
ally, there were only two or three choices for such a word and
these choices were from different syntactic or semantic categories.
It is hoped that future work with such higher level knowledge
will allow these ambiguities to be reduced. The conclusion of
this experiment was that the proposed algorithm would execute
significantly fewer tests than a similar character recognition
technique at a tolerable cost in text that could not be completely
recognized.

7. Experimental Results
The viability of the hypothesis testing strategy and its abil-

ity to adapt to different input conditions was demonstrated by its
implementation for a dictionary of 630 words from a randomly-
selected sample of 2003 running words from the Corpus. Each of
these words was generated in ten different fonts. The fonts were
24 pt. samples digitized at 500 pixels per inch binary on a laser
drum scanner. Word images were generated by appending the
images of the appropriate characters. Word images were also gen-
erated by appending the characters and moving them horizon-
tally until they touched. This is very difficult for some tech-
niques to compensate for. This resulted in 12,600 input images.

Five of the ten fonts were used as training data. The other
fonts were subject to no image processing before they were used
for recognition testing. The 6300 words in the training data
were recognized correctly 98% of the time when the characters
were not touching and 95% of the time when the characters
were touching. The other cases were errors. The 6300 words not
in the training data were correctly recognized in 95% of the cases
when the characters were not touching and 92% of the time
when the characters were touching.
8. Discussion and Conclusions

A computational theory and algorithm for fluent reading
was presented. The work presented in this paper sought to
bridge the gap between theory and methods and to bring to read-
ing algorithms the benefits of many years of psychological inves-
tigation of human reading. The mechanism used to effect this
transfer was a computational theory and its related algorithms.
This is an example of applying the theoretical constructs of
Artificial Intelligence to an engineering problem.

It was seen that people do not read by recognizing isolated
characters as do most current techniques. Instead, people recog-
nize larger groups of letters or words. This recognition process
uses at least two stages. One uses a gross visual description to
develop expectations about words in a running text. The other
integrates these expectations with detailed visual processing to
form complete perceptions of the words in the text. This stage of
processing is very individualized and subject to change based on
many external factors. Another process that occurs during read-
ing uses high-level knowledge to affect the visual processing.

This paper discussed algorithms that performed the two
stages of visual processing. A method for hypothesis generation
was presented that extracted a gross visual description of words
and used it to return a number of hypotheses from a dictionary
that contained the word in the input image. A technique for
hypothesis testing was also presented. This method was struc-
tured as a tree search of discrimination tests. The result of a
discrimination test was either a recognition of the input word or

another set of tests that could be applied to the image. ‘I’he tree
search methodology was set up so that different testing strategies
could be used to recognize a word, as a human reader is capable
of doing.

An algorithm was presented that determined the minimum
number of different discrimination-tests needed to recognize the
words in a large vocabulary. It was shown that this technique
requires a small number of tests to recognize any word in large
subsets of text. Recognition experiments on many different fonts
showed that about 95% correct recognition was achieved on
12,600 word images. This demonstrates the ability of this
methodology to tolerate different formats and its potential to
reach high levels of performance.

ACKNCWLEDGEMENTS
The author is grateful to Sargur N. Srihari for valuable

consultations. We acknowledge the support of the Ofhce of
Advanced Technology of the United States Postal Service under
contract BOA 104230-84-0962.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

REFERENCES

W. K. Estes, “On the interaction of perception and memory
in reading,” in Basic Processes in Reading: Perception and
Comprehension, D. LaBerge and S. J. Samuels (editor),
Lawrence Erlbaum Associates, Hillside, New Jersey, 1977.

L. Frazier and K. Rayner, “Making and correcting errors
during sentence comprehension: eye movements in the
analysis of structurally ambiguous sentences,” Cognitive
Psychology 14 (1982),178-210.
R. N. Haber and L. R. Haber, “Visual components of the
reading process,” Visible Language XV, 2 (19811, 147-181.

J. Hochberg, “Components of literacy: Speculations and
exploratory research,” in Basic Studies on Reading, H.
Levin and J. P. Williams (editor), Basic Books, Inc., New
York, 1970, 74-89.

J. J. Hull, “Inter-word constraints in visual word
recognition,” Proceedings of the Conference of the
Canadian Society for Computational Studies of
Intelligence, Montreal, Canada, May 21-23, 1986, 134-l 38.

J. J. Hull, “Hypothesis generation in a computational model
for visual word recognition,” IEEE Expert, August, 1986,
63-70.
J. J. Hull, “A computational theory of visual word
recognition,” Technical Report, SUNY at Buffalo,
Department of Computer Science, 1987.

H. Kucera and W. N. Francis, Computational analysis of
present-day American English, Brown University Press,
Providence, Rhode Island, 1967.

D. Marr, Vision, W.H. Freeman and Company, San
Francisco, 1982.

K. Rayner, Eye movements in reading: percept& and
language processes, Academic Press, New York, 1983.

J. Schurmann, “Reading machines,” Proceedings of the 6th
InternutionaJ Conference on Pattern Recognition, Munich,
West Germany, October 19-22, 1982, 1031-1044.
L. G. Shapiro, “The role of AI in computer vision,” The
Second IEEE Conference on ArtijkiuZ Intelligence
Applicakms, Miami Beach, Florida, December 11-l 3, 1985,
76-81.

722 Vision

