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ABSTRACT 

A computational theory of reading and an algorithmic real- 
ization of the theory is presented that illustrates the application 
of the methodology of a computational theory to an engineering 
problem. The theory is based on past studies of how people read 
that show there are two steps of visual processing in reading and 
that these steps are influenced by cognitive processes. This paper 
discusses the development of a similar set of algorithms. A gross 
visual description of a word is used to suggest a set of hypotheses 
about its identity. These then drive further selective analysis of 
the image that can be altered by knowledge of language charac- 
teristics such as syntax. This is noS a character recognition algo- 
rithm since an explicit segmentation of a word and a recognition 
of its isolated characters is avoided. This paper presents a unified 
discussion of this methodology with a concentration on the 
second stage of selective image analysis. An algorithm is 
presented that determines the minimum number of tests that 
have to be programmed under the constraint that the minimum 
numberqf tests are to be executed. This is used to compare the 
proposed technique to a similar character recognition algorithm. 

1. Introduction 

The fluent reading of text by computer without human 
intervention remains an elusive goal of Artificial Intelligence 
research. Fluent reading is the transformation of an arbitrary 
page of text, that could contain a mixture of machine-printed, 
hand-printed, or handwritten text, from its representation as a 
two-dimensional image into a form understandable by a com- 
puter, such as ASCII code. The current lack of a technique with 
these capabilities is interesting in light of the relative ease with 
which people read and the many years of investigation into com- 
puter reading algorithms, the methods people use to read text, 
and the long history of Artificial Intelligence research into com- 
puter vision [12]. 

The parallel between algorithms for reading text and expla- 
nations for human performance is most interesting. With some 
notable exceptions, most reading algorithms use a character 
recognition approach in which words are segmented into isolated 
characters that are individually recognized. For these algorithms 
reading is equivalent to a sequence of character recognitions. 

The way people read is significantly different from charac- 
ter recognition. We bring to reading a wealth of information 
about the world and expectations about what we will read. This 
is mixed with knowledge about how text is arranged on a page, 
knowledge of the syntax and semantics of language, and visual 
knowledge about letters and words. The recognition processes 
that take place during fluent reading use visual information 
from much more than just isolated characters. Whole words or 
groups of characters are recognized by processes, that in some 
cases, do not even require detailed visual processing. This is 

because fluent human reading uses many knowledge sources to 
develop an understanding of a text while it is being recognized. 
This integration of understanding and recognition is responsible 
for human performance in fluent reading. 

The fact that few reading algorithms have utilized the 
many disparate knowledge sources or the recognition strategy of 
a human reader might explain the gap between the reading 
proficiency of algorithms and people. Although some character 
recognition techniques have been augmented with knowledge 
about words, no reading algorithm has been proposed that fully 
utilizes the sorts of knowledge routinely employed by a human 
reader [ll]. Such an algorithm would have the potential of 
yielding substantial improvements in performance. 

2. A Computational Theory and Algorithm for Reading 
The mechanism of a computational theory and its algo- 

rithm are chosen as the vehicle for the present investigation of 
reading because reading is an information processing task to 
which this mechanism applies [9]. The proposed computational 
theory of reading is based on previous studies of human perfor- 
mance. It shows what is computed by people when they read, 
why this is important, and general guidelines of how this should 
be carried out. Since reading is a complex information processing 
task involving interactions of knowledge from many different 
sources, algorithms are developed that implement only a subset 
of these interactions. However, these algorithms are sufficient to 
illustrate that if the complete version of the theory were imple 
mented, a robust “reading machine” would result. 

The computational theory of reading proposed here IS 
derived from work on human reading that includes studies of 
human eye movements [lo]. To a person who reads a line of 
text, it seems to them as if their eyes move smoothly from left to 
right. However, this is not completely true. In reality, our eyes 
move in ballistic jumps called saccades from one Jxation point 
to the next. During a saccade the text is blurred and unreadable. 
(This is not apparent to the reader.) Therefore, most of the visual 
processing of reading takes place during the fixations. Usually 
there are about one to three fixations near the beginning of the 
word. However, interestingly enough, some words are never 
fixated. The sequence of fixations is approximately from left to 
right across a line of text, however, regressions do occur fre- 
quently. Figure 1 shows the sequence of fixations in a line of 
text [l]. 

There are two types of visual processing in reading. In the 
first type of processing, information from peripheral vision pro- 
vides a gross visual description of words to the right of the 
current fixation point. This information is used to form expecta- 
tions about the words. The second stage of processing occurs on 
a subsequent fixation when these expectations are integrated with 
other visual information. 
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The testing sequence is structured as a tree that specifies the order 
and locations in which tests are performed. The result of a test 
determines successive tests and reduces the number of words that 
could match the input image. 

It is assumed that the input image contains a word in the 
neighborhood. This constrains the features that could occur at 
locations in the image. If a set of features are defined a-priori, 
this constraint determines the subset that could be present. The 
features used in this paper for hypothesis testing are shown 
below: Figure 1. Sequence of fixations in a line of text [I]. 

The visual processing is influenced by many high-level fac- 
tors that include the reason a person is reading the passage of 
text, as well as the familiarity of the reader with the subject and 
his or her skill level. A more skilled reader uses visual informa- 
tion more economically than a less skilled one [3]. That is, a 
skilled reader uses less visual processing than a poor reader. 
Recent work has also shown that syntactic processing also 
influences the visual processing of a text [2]. 

The proposed computational theory of reading contains 
three stages that are similar to those of human reading. The first 
stage generates hypotheses about words from a gross visual 
description. This is similar to the visual processing of words to 
the right of a fixation point and is an essential component of one 
theory of human reading [4]. The second stage uses these 
hypotheses to determine a feature testing sequence that can be 
executed on the image to recognize the word. This sequence is 
adaptable to different high-level influences and can be executed at 
different physical locations in the word. This stage is similar to 
the detailed visual processing that takes place at a fixation. The 
third stage of the theory concerns high-level processing. This 
stage captures the influence of the various non-visual processes 
that influence reading such as syntax and semantics. These 
processes remove word-hypotheses from consideration that do not 
agree with the high-level constraints. This is a way to represent 
the influence of many high-level knowledge sources. 

The remainder of this paper discusses algorithms that 
implement two of the three stages outlined above. A hypothesis 
generation procedure is briefly presented. A global contextual 
analysis procedure is not fully discussed here. Instead, the reader 
is referred to a technique that uses knowledge about transitions 
between words to improve the performance of the hypothesis 
testing portion of this algorithm [5]. A hypothesis testing com- 
ponent is fully presented and an algorithm is discussed that 
determines the minimum number of feature tests needed by this 
component. 

3. Hypothesis Generation 
The hypothesis generation component of the algorithm uses 

a description of the gross visual characteristics of a word image 
to index into a dictionary and retrieve a subset of words called a 
neighborhood that have the same description. The description is 
the left-to-right sequence of occurrence of a small number of 
features. The features are simple and easy to extract to increase 
the reliability of the technique in the presence of noise. This 
approach is suitable for generating hypotheses about an input 
word since a small number of features can partition a large dic- 
tionary into a limited number of small neighborhoods [6]. This is 
less error-prone than using many features to carry out complete 
recognition. 

4. Hypothesis Testing 
The hypothesis testing component of the algorithm uses the 

words in a neighborhood to determine a feature testing sequence. 

feature 
code 

E 

6 

10 
EE 

description 

empty space; 
closed at both the top and bottom, e.g. “0”; 

closed at the top, e.g. “n”; 
closed at the bottom, e.g. “u”; 

left of a short vertical bar m an “a” 
right of a short vertical bar m a “c” 
right of the short vertical bar in “en 
right of a long vertical bar m an “f” 

between two short vertical bar in a “g” 
right of a long vertical bar in a “k” 

right of a short vertical bar in an “r” 
large empty space containing one of { s,v,wx,yz 1. 

A discrimination test decides which member of a subset of 
these features is present at a given location. A list is used to 
show the features discriminated by a test. For example, (1 2) is a 
test that discriminates between feature 1 (closed at both the top 
and bottom) and feature 2 (closed at the top). The locations used 
by hypothesis testing are the areas between the features 
discovered by the neighborhood calculation. Several of the 
hypothesis testing features can be adjacent to one another in these 
locations. For example, in the sequence “ba”, the area between 
the short vertical bar in the “b” and the short vertical bar in the 
“a” contains the hypothesis testing feature E4. 

An example is shown in Figure 2 of how the discrimina- 
tion tests are arranged in a tree. The hypothesis generation pro- 
cedure determined that there were four features in the input 
word and four locations (1 through 4) between those features at 
which a discrimination test could be applied. The features of the 
hypothesis generation stage are numbered 2110 in the second line 
of Figure 2. The 2 refers to an ascender, the l’s to short vertical 
bars, and the 0 the a significant vertical space that does not con- 
tain a vertical bar. These are all present in the same sequence in 
the neighborhood { be, has, he >. 

The nodes at the first level of the tree are the tests that 
could be applied at each of the four locations. The result of a 
test either determines a recognition or the next set of tests that 
could be applied. In Figure 2, if location 3 is considered and the 
discrimination between features E and E4 is performed, has is 
recognized if E4 is present. Otherwise, if E is present, the choices 
are narrowed down to be or he. If feature 1 is then found in 
position 2, be is recognized, Otherwise if feature 2 is found in 
position 2, he is recognized. 

Of particular interest are the shortest paths in a hypothesis 
testing tree. These are paths from a top-level node to a terminal 
node (all of its descendents are word decisions). A shortest path 
contains the fewest tests needed to recognize the words in a 
hypothesis testing tree. There are four shortest paths in Figure 2. 
They are from position 2 tr position 3 (contains tests (1 2) and (E 
E4)), position 2 to position 4 (contains tests (1 2) and (6E EE)), 
position 3 to position 2 (contains tests (1 2) and (E E4)), and from 
position 4 to position 2 (contains tests (1 2) and (6E EE)). There- 
fore, there are two different mimimum sets of tests that can be 
used to recognize the words in this tree. They are { (1 21, (E E4) 
) and { (1 21, (6E EE) 1. Henceforth, a shortest path will also 
mean the set of tests it contains. 
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( he, has, he > 

his his be he be he 

Figure 2. An example search tree for the neighbor- 
hood { be, has, he ) with visual description “2110” Each 
node contains a position indicator “In” where n is one of 
1 through 4. The test at each node is carried out by 
discriminating between the features that follow the po- 
sition indicator. 

5. Minimum Number of Tests 

It is of interest to determine the minimum number of 
different tests that would have to be executed to recognize every 
word in a given dictionary. (N.B. A dictionary is partitioned into 
neighborhoods by the hypothesis generation stage. Each neighbor- 
hood is in one-to-one correspondence with a hypothesis testing 
tree.> This set of tests (called MT) contains the smallest set of 
tests that would have to be programmed under the constraint 
that the minimum number are to be executed. As such, it indi- 
cates the computational effort needed to recognize the words in 
the dictionary and gives us a way to compare this methodology 
to other reading algorithms. The more efficient technique would 
require fewer tests and thus would have a smaller MT. 

Several of the issues involved in finding MT are illustrated 
by the following example. The top 100 most frequent words in 
the Brown Corpus were chosen and the testing trees for these 
words were determined. The Brown Corpus is a text of over 
l,OOO,OOO words that was designed to represent modern edited 
American English [S]. Of the 100 most frequent words in the 
Corpus, 55 are uniquely recognized by the hypothesis generation 
computation. The other 45 words are contained in 16 trees. 
These words are shown in Figure 3 along with the tests on the 
shortest paths in their trees. 

A shortest path is shown as a list of tests and a tree is 
represented by a list of the shortest paths it contains. In this 
example, there are as few as one (trees 5, 8,10-13, and 16) and as 
.nany as eleven different shortest paths (tree 7) in a testing tree. 
Overall, there are 25 different tests on the 16 shortest paths in 
Figure 3. They are: 

(1 2) (E ~4) (6~ EE) (EE ~4) (1 E ~4) (6~ EE E) (1 E) 
(6~ E> (EE EEL E4) (6~ 6~4) (10~ E) (10~ 6E) (10~ 2) 
(6~ 6~4 E) (10~ 2 E) (10~ 6E EE) (6EE 6E) (EE E) 
;;$6E$ EE) (1 2 5E4 6EE) (1 6E E E4) (1 3) (2 3) (1 3 E) 

The objective is to choose the smallest subset of these tests that 
contains the tests on at least one of the shortest paths in each 
tree. 

tree W0d.S shortest paths 
1 be, has, he (((1 2) (E ~4)) ((1 2) (6~ EEN) 
2 have, her, for (((1 E E4)) ((6~ EE EN) 
3 what, who (((E E4)) ((1 E))) 
4 well, all NEE E4N ((6~ EN 
5 was, way, we, as (((EE EE4 E4))) 
6 so, at NEE E4N ((1 ENI 
I years, were, are, any (((6E 6E4) (EE E4)) ((1OE E) (EE E4)) 

Ki0EE 6~) GE ~4)) ((10~ 2) (EE 1~41) 
((6~ EE) (EE ~4)) ((10~ 2) (6~ 6E4 EN 
((6~ 6~4 E) (6~ EE)) ((10~ 2 E) (EE 1~41) 

((10~ 2 E) (6~ EN ((IOEE 6~ EE) (EE ~4)) 
((i0EE 6E EE) (6~ 2))) 

8 they, the (((6EE 6E))) 
9 down, than, then (((1 E E4)) ((6~ EE EN 
10 two, to (((EE EN) 
11 or, my, new (((1OE 6EE EE))) 
12 on, no, can, even (((1 2 5E4 6EE))) 
13 me, may, now, over (((1 6E E E4))) 
14 out, not (((1 2)) ((1 3))) 
15 one, our (((2 3)) ((1OE 6E))) 
16 man, most, must (((1 3 E))) 

Figure 3. The shortest paths in the testing trees for the 16 
neighborhoods computed from the top 100 most frequent words 
in the Brown Corpus. 

The brute force algorithm for this is to evaluate every pos- 
sible subset and determine if the tests in it can solve every tree. 
However, this is obviously unsuitable because of an exponential 
complexity. Therefore, an approach is needed that reduces the 
computation. An algorithm is proposed here that achieves this 
objective. 

The algorithm takes the shortest paths from a number of 
trees as input (Figure 3 is an example). It iteratively adds the 
tests on a shortest path to the solution set (initially empty) until 
it contains the tests that can be used to recognize the words in 
every tree. The solution set is then output. It should be koted 
that all the tests on one of the shortest paths in each tree must be 
in the solution. Otherwise, the words in that tree could not be 
recognized. For example, in tree one of Figure 3, either both (1 2) 
and (E E4) or both (1 2) and (6E EE) must be in the solution. A 
more precise description of the algorithm is: 

(1). 

(2). 

(3). 

(4). 

Algoyithm: 
Take the union of the shortest paths, 

Determine the number of trees that are solved by 
the tests in each shortest path. (Solving a tree is 
equivalent to having the tests on one of its shortest 
paths in the solution.) 

Find the shortest paths that contain the most tests 
and solve the maximum number of trees; in the 
above example there are eight shortest paths that 
contain two tests and solve three trees. For exam- 
ple, tests (1 2) and (E E4) solve trees 1, 3, and 14; 
(6E 6E4) and (EE E4) solve trees 4,6 and 7, etc. 

Add the tests from one of the shortest paths 
discovered in step 3 to the solution. Remove the 
trees that are solved from consideration. Derive a 
reduced set of shortest paths by removing tests 
that are in the solution. 
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(5). If such a reduction yields an empty set of shortest 
paths, output the tests in the solution. Stop only 
if one of the possibly many solutions is desired. 
Otherwise continue with step one. 

This algorithm must terminate because every reduction is 
guaranteed to produce a smaller set of shortest paths. There are 
16 different solutions to the example set of shortest paths in Fig- 
ure 3. Each solution contains 13 tests. One solution is: 

(1 2) (E E4) (EE EE4 E4) (EE E4) (6E 6E4) (1 E E4) (2 3) 
(6EE 6E) (EE E) (1OE 6EE EE) (1 2 5E4 6EE) (1 6E E E4) 
(1 3E) 

The 16 solutions to the example set of equations illustrates 
that there may be many solutions that contain the minimum 
number of tests. Choosing the “easiest” among them is largely a 
matter of judgement and intuition. The algorithm could be 
tuned to expand only the most promising paths, i.e., those that 
early-on are found to contain “easy” tests. 

A version of the above procedure was implemented that 
found the first set of tests on a shortest path. This shows the 
smallest number of tests that must be executed to recognize a 
given vocabulary. This was applied to two vocabularies. The 
first were subsets of the Brown Corpus determined by frequency. 
The second were the subject categories or genres that make up the 
Brown Corpus. These results are shown in Table 1. 

These results are interesting because they show at most 347 
different tests are needed to recognize the text in any subject 
category of the Brown Corpus. The experiments that increased 
dictionary size show a linear effect of the number of dictionary 
words on the number of tests needed to recognize those words. 
Usually, doubling the dictionary size increases the number of 
tests by fifty percent. Another interesting result of this study is 
the difference between genres. Only 184 tests are needed to 
recognize the 34,495 words in genre D. This is very interesting 
in comparison to the 220 tests needed to recognize nearly the 
same number of words (35,466) in genre C, i.e., 36 more tests are 
needed to recognize only 1000 more words. This could be attri- 
butable to the difference in subject categories (genre C contains 
press reviews and genre D contains religious material). However, 
it is more likely due to the difference in the number of words in 
the dictionaries of the genres. The dictionaries for genres C and D 
contain 7751 words and 5733 words, respectively. Overall, the 
results indicate that the hypothesis testing methodology is 
economical and requires much fewer than the theoretical max- 
imum of 212 tests to be programmed. In fact, so few tests are 
needed that an implementation with high degrees of performance 
should be achievable. 

6. Comparison to Character Recognition 

The reading algorithm proposed in this paper has been com- 
pared to a character recognition algorithm of similar design [7]. 
This was done by designing a character recognition algorithm 
that was comparable to the proposed reading algorithm and 
determining the minimum number of tests needed by both 
approaches. 

The character recognition algorithm was designed to contain 
both a hypothesis generation and a hypothesis testing phase. The 
hypothesis generation stage was the same as that of the proposed 
technique. Because a character recognition algorithm requires 
that individual characters be isolated, an additional assumption 
was made that the characters in the input words could be per- 
fectly segmented and, thus, the number of characters in each 
word could be determined. Therefore, the contents of each neigh- 
borhood were constrained to be words with the same number of 
characters. 

The hypothesis testing phase of the character recognition 
algorithm used the same design as the proposed technique. The 
only difference was in the discrimination tests. They were 
between-characters rather than between-features. This is the 
point where the two methods differed. For example, in the 
neighborhood { may, now > three character-discriminations were 
possible: (m n>, (a 01, and (y w>. In contrast, the proposed tech- 
nique would discriminate among the features that occur between 
the vertical bars. 

The character recognition algorithm can be summarized: 

1. Assume that an input word can be perfectly segmented and 
that it comes from a given, fixed vocabulary. Identify the 
locations of each character. 

2. Determine the neighborhood of the input word in the given 
vocabulary. The same features and feature extraction pro- 
cedure are used as in the proposed methodology except that 
the neighborhood must contain words with the same 
number of characters. 

3. Use the proposed method of hypothesis testing to recognize 
the input. Because this is a character recognition approach, 
the discriminations are between characters that occur in the 
positions specified by step 1. 

One modification to the proposed method was needed to 
make the neighborhoods calculated by the two methods the same. 
The hypothesis generation algorithm used an additional parame- 
ter of the number of characters in each word. Note that the 
modification requires only that the number of characters in a 
word be determined. This can be much easier than segmenting a 
word into isolated characters. 

diet. words of no. of 
size text tests 
50 413,565 6 
loo 483,355 13 
250 566,288 27 
500 632,693 42 
750 674,112 51 

1000 705,045 61 
2000 781,581 92 
3000 827,178 128 
4000 858,306 155 

diet words of no. oi 
Size text tests 

5000 880,802 172 
6000 898,145 197 
7OQO 912,068 205 
8OUO 923,358 223 
9000 932,831 246 

10,000 940,871 252 
15,000 968,004 331 
20,000 984,105 368 
25,000 994,105 425 I - 

genre 

A 
B 
C 
D 
E 
F 
G 

words of 
text 

88,051 
54,662 
35,466 
34,495 
72,529 
97,658 
152,662 

no. of 
tests 
297 
225 
203 
184 
256 
294 
347 

H 61,659 206 

genre words of no. of 
text tests 

J 160,877 303 
K 58,650 226 
L 48,462 219 
M 12,127 127 
N 58,790 235 
P 59,014 238 
R 18,447 158 

Table 1. The minimum number of tests that must be executed to recognize the indicated 
vocabularies. 
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The minimum number of tests needed by the algorithm 
proposed in this paper and the character recognition technique 
were determined for the genres of the Brown Corpus. It was 
discovered that the proposed algorithm would have to execute 
from one percent to fourteen percent fewer tests to recognize the 
same texts. However, from three percent to seven percent of the 
running text could not be completely recognized by the proposed 
technique. These were words where the hypothesis testing algo- 
rithm could not reduce the neighborhood to a unique choice. Usu- 
ally, there were only two or three choices for such a word and 
these choices were from different syntactic or semantic categories. 
It is hoped that future work with such higher level knowledge 
will allow these ambiguities to be reduced. The conclusion of 
this experiment was that the proposed algorithm would execute 
significantly fewer tests than a similar character recognition 
technique at a tolerable cost in text that could not be completely 
recognized. 

7. Experimental Results 
The viability of the hypothesis testing strategy and its abil- 

ity to adapt to different input conditions was demonstrated by its 
implementation for a dictionary of 630 words from a randomly- 
selected sample of 2003 running words from the Corpus. Each of 
these words was generated in ten different fonts. The fonts were 
24 pt. samples digitized at 500 pixels per inch binary on a laser 
drum scanner. Word images were generated by appending the 
images of the appropriate characters. Word images were also gen- 
erated by appending the characters and moving them horizon- 
tally until they touched. This is very difficult for some tech- 
niques to compensate for. This resulted in 12,600 input images. 

Five of the ten fonts were used as training data. The other 
fonts were subject to no image processing before they were used 
for recognition testing. The 6300 words in the training data 
were recognized correctly 98% of the time when the characters 
were not touching and 95% of the time when the characters 
were touching. The other cases were errors. The 6300 words not 
in the training data were correctly recognized in 95% of the cases 
when the characters were not touching and 92% of the time 
when the characters were touching. 
8. Discussion and Conclusions 

A computational theory and algorithm for fluent reading 
was presented. The work presented in this paper sought to 
bridge the gap between theory and methods and to bring to read- 
ing algorithms the benefits of many years of psychological inves- 
tigation of human reading. The mechanism used to effect this 
transfer was a computational theory and its related algorithms. 
This is an example of applying the theoretical constructs of 
Artificial Intelligence to an engineering problem. 

It was seen that people do not read by recognizing isolated 
characters as do most current techniques. Instead, people recog- 
nize larger groups of letters or words. This recognition process 
uses at least two stages. One uses a gross visual description to 
develop expectations about words in a running text. The other 
integrates these expectations with detailed visual processing to 
form complete perceptions of the words in the text. This stage of 
processing is very individualized and subject to change based on 
many external factors. Another process that occurs during read- 
ing uses high-level knowledge to affect the visual processing. 

This paper discussed algorithms that performed the two 
stages of visual processing. A method for hypothesis generation 
was presented that extracted a gross visual description of words 
and used it to return a number of hypotheses from a dictionary 
that contained the word in the input image. A technique for 
hypothesis testing was also presented. This method was struc- 
tured as a tree search of discrimination tests. The result of a 
discrimination test was either a recognition of the input word or 

another set of tests that could be applied to the image. ‘I’he tree 
search methodology was set up so that different testing strategies 
could be used to recognize a word, as a human reader is capable 
of doing. 

An algorithm was presented that determined the minimum 
number of different discrimination-tests needed to recognize the 
words in a large vocabulary. It was shown that this technique 
requires a small number of tests to recognize any word in large 
subsets of text. Recognition experiments on many different fonts 
showed that about 95% correct recognition was achieved on 
12,600 word images. This demonstrates the ability of this 
methodology to tolerate different formats and its potential to 
reach high levels of performance. 
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