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Abstract 
We present an empirical investigation of the importance of 

accurate assessment of prior probabilities in a typical visual clas- 
sification problem, handwritten ZIP Code recognition. We in- 
vestigated prior probabilities for individual digits and entire zip- 
codes; the results for priors of individual digits are summarized 
here and discussed in detail in [l]. In our studies of prior dis- 
tributions over entire ZIP Code we found that qualitative infor- 
mation had a major effect on the efficacy of the algorithm while 
quantitative information is relatively unimportant. 

1 Introduction 
Applying Bayesian reasoning to a perception problem requires prior 
Probabilities for the possible outcomes. For example, when classifying 
a handwritten digit as shown in figure 1 one must give prior probabil- 
ities for the digits from 0-9. These prior probabilities are difficult to  
determine and may change from time to  time and place to place. 

However, if the observed data results in large likelihood ratios then 
the same classification occurs for almost any prior probability distribu- 
tion. For example: consider the statistical test of determining if a coin 
is fair or biased towards heads by a 2 to 1 ratio by 1000 independent 
flips. If 500 of the flips were heads then the posterior probability that 
the coin is fair is greater than .5 for all nonnegligible prior probabili- 
ties. Thus while a prior probability for the coin being fair is required, 
a prior of .5 results in the same answer as a prior of .01 or .99; hence, 
this method of classification is insensitive to  the value of the prior in 
this case. Only if the number of heads is within the closed interval 
[579,591] will the prior being .01 or .99 matter; thus for only 13 un- 
likely outcomes do reasonable priors affect the classification. Note that 
1000 trials corresponds to a 31 by 32 binary image. 

In this research project we performed empirical testing to deter- 
mine the sensitivity of a simple vision problem to several types of prior 
information. The problem we chose was ZIP Code recognition, because: 

Large data sets are available. 

A rich structure of prior information is available (for example 
only certain ZIP Codes are legal). 

The data fits into a small number of categories. 

Prior probabilities on the individual digits and prior Probabilities 
on the context (the other digits in the ZIP Code) are available. 

We studied two types of prior information: 

1. Prior probabilities for the classification of individual digits. A 
prior probability distribution is given for the digits from 0 through 
9. This research is summarized here and discussed in detail in [l]. 

‘We gratefully acknowledge the work of Carolyn Sher in editing this work and 
the financial support of the Office of Advanced Technology of the United States 
Postal Service and the Rome Air Development Center. 

2. Prior probabilities for entire ZIP Code. A prior probability distri- 
bution is given over 5 digit numbers. Such a distribution can be 
used to represent contextual information. For example the fact 
that the first two digits of ZIP Codes are often 11 can easily be 
represented in such a distribution. 

To determine the sensitivity of a Bayesian classifier to prior infor- 
mation, we applied the classifier to  two sets of prior information - a 
uniform prior and a correct prior. The difference in the accuracy of the 
classifier measures the sensitivity of the classifier to  prior information. 
For prior distributions over single digits the difference from using the 
correct priors was insignificant. For prior distributions over the full set 
of ZIP Codes the improvement measured the presence of information 
rather than the degree of belief in it.  

Our experiments indicate that visual classification problems are 
only sensitive to  certain types of prior information. In particular qual- 
itative information such as whether “10001” is a legal ZIP Code is 
much more important than quantitative information like “10320” re- 
ceives twice as much mail as “10321”. 

Determining what kinds of prior information are important for cor- 
rect classification eases the application of Bayesian techniques to the 
visual domain - especially since the most important information s e e m  
to be qualitative and thus easily determined. 

2 Background 
Statistical Pattern recognition [2] often takes a Bayesian approach to 
pattern classification. In the area of character recognition much simi- 
lar work has been done on spelling correction. James Peterson studied 
the effect of dictionary size on word recognition [3], and Kashyap and 
Oomen [4] applied probabilistic methods to spelling correction. Transi- 
tion probabilities also are often used with the Viterhi algorithm [5] for 
recognition of words [ G ,  7, 81. George Nagy presents a general survey 
of statistical approaches to  character recognition in [9]. 

Often for data restoration the maximum entropy principle is used 
to  discover priors. Our results support the use of maximum entropy 
estimates of prior distributions, since we show that in most cases equal 
priors are nearly as effective as correct priors. Jaynes [lo] is a strong 
proponent of applying maximum entropy to  inverse problems such as 
image processing; Frieden [ l l ]  has thoroughly studied methods of ap- 
plying maximum entropy to data reconstruction; Herman [12] applied 
maximum entropy to medical imaging; Andrews and Hunt [13] discuss 
using entropy to  derive priors for Bayesian image processing; Gull and 
Skilling [14] studied which forms of entropy apply to images. 

Using context for handwriting recognition has been studied by Duda 
and Hart [15]. A good survey of context work appears in [1G]. Hull 
has studied the effect of context on character recognition extensively 
[17, lS, 191. 

Much of computer vision is based on statistical pattern recognition[2] 
Other important work that takes this approach is Lowrance and Gar- 
vey [20], and Wesley and Hanson [21, 221 who use Dempster Shafer 
statistics; and Geman [23], Chellappa [24], Art Owen [25], and David 
Sher [2G, 27, 11 who have taken a variety of Bayesian approaches to  a 
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variety of vision problems. Percent Correct 
Correct Equal 
Priors Priors 

95.22 94.89 
94.22 94.00 
93.56 93.33 
93.00 92.89 
92.44 92.33 
92.22 92.33 

3 Experimental Design 
The experiments measured accuracy of classification for a Bayesian 
classifier using a variety of priors. The data to  be classified were hand- 
written ZIP Codes collected from mail pieces. The methodology for 
collecting this data is documented in [28]. The digits of the ZIP Codes 
were hand segmented (separated), normalized and binarized into 16 by 
16 arrays of bits. 

For each 16 by 16 array of bits, a ,  and for each digit d we computed 
the probability that a would be generated by someone trying to  write a 
d ,  the inverse probability distribution for d from a. Given a prior distri- 
bution for the digits we can use Bayes’ law to compute the probability 
that a is a representation of d. 

To compute the probability that a is a representation of d,  for ex- 
ample “0”, we collected a training set of O’s, l’s, 2’s, . . . , a total of 
8120 digit images were used for training. We used the training set as a 
basis for a nearest neighbor classifier described in [l]. 

Our first experiment was to discover the importance of prior proba- 
bilities for the individual digits of a ZIP Code. We compared using the 
inverse probabilities generated by our classifier with the true probabili- 
ties of digits in the test data to using the inverse probabilities with the 
uniform prior distribution and to a corrupted prior distribution. The 
correct prior distribution correctly classified 8.7% of the digits incor- 
rectly classified by the corrupted distribution - not a very impressive 
improvement. 

Our second study involved contextual information. How much can 
classification improve due to  constraints from the other digits of the ZIP 
Code; for example, how useful it is to know that 14 is much more likely 
than 98 to begin a ZIP Code. This study measures the the decrease in 
error rate caused by increasing the accuracy of the prior distribution 
of ZIP Code probabilities in the detector. 

The inverse probability that a set of 5 arrays was generated by a .  
person attempting to  generate 14260 is the product of the probabilities 
that she would write each array when she was trying to  generate the 
corresponding digit of 14260 (the probability that the first array would 
be generated by a person trying to write a “1” multiplied by the prob- 
ability that the second array would be generated by a person trying to 
write a “4” and so on). Hence the total inverse probability of 14260 
is the product of the inverse probabilities of its digits, the probability 
that the digits were independently distorted, a common simplifying as- 
sumption. Giveii a prior distribution over the set of ZIP Codes and 
we applied Bayes’ law to classify the digits and counted the correctly 
classified ZIP Codes. 

We used two prior distributions over ZIP Codes. The first assigned 
equal probability to  every valid ZIP Code (only about 50% of the 5 
digit numbers are ZIP Codes). The second distribution assigned equal 

‘probability to the ZIP Codes in the test data. Using the second dis- 
tribution, which is more informative, resulted in a more accurate clas- 
sification of digits. We measured the accuracy yielded by entering a 
mixed prior into the detector; the mirlure of two distributions, PI and 
Pz is aP1+ (1 - a ) &  with a E [0,1], this is the distribution of elements 
randomly selected with probability distribution PI with probability a 
and selected from distribution Pz with probability 1 - a. Varying a 
between 0 and 1 yields a quantitative measure of the importance of 
prior information. Our experiments here demonstrated that qualitative 
rather than quantitative effects significantly improved our accuracy of 
classification. 

Percent Errors Percent 
Correct Equal Reduction 
Priors Priors in Errors 

4.78 5.11 6.5 
5.78 6.00 3.7 
6.44 6.67 3.4 
7.00 7.11 1.5 
7.56 7.67 1.4 

-1.4 7.78 7.67 

4 Experimental Results 
In our most significant exploration of the importance of prior informa- 
tion for classifying individual digists, we randomly selected from our 
test set digits according to a specified distribution, for example, we 
selected digits at random so that 64% would be 0’s and the remaining 
10% of the tests would be evenly distributed among the remaining dig- 
its. We then tested the improvement in accuracy from using the correct 

Correct 
N percent 

Percentage 0’s 

Errors 
N percent 

64 
55 
46 
37 
28 
19 

Correct 
N percent 

Errors 
N percent 

Table 1: Error rates using correct and equal priors on digits distributed 
according to  a specified distribution 

prior probabilities over using equal prior probabilities for all the digits 
as shown in table 1. In those experiments the percentage of 0’s was ad- 
justed and all other digits were given equal probability. The reduction 
in the number of errors was less than 7% even when 64% of the digits 
were 0, further indicating the unimportance of prior information a t  the 
level of digits. 

The experiment on prior information about complete ZIP Codes 
used the same template matcher as well as the same training and testing 
data. This experiment used the digits from each of the 312 ZIP Codes 
and determined the ZIP Code from the list of 41,595 valid USPS ZIP 
Codes with the maximum a-posteriori probability. The prior proba- 
bility of a ZIP Code was computed as the product of the priors of 
its digits. This was multiplied by the probabilities of those digits as 
determined by the template matcher. A weighting factor f was also 
multiplied by each ZIP Code. The result was the posterior probability 
of the ZIP Code. The recognition decision was the ZIP Code with the 
maximum a-posteriori probability. 

The weighting factor was varied to reflect different levels of con- 
textual information. The minimum contextual information was repre- 
sented by an equal probability for each ZIP Code (i.e., 1/41,595). The 
maximum contextual information wits represented by an equal proba- 
- 
f 
- 
0.0 
0.01 
0.05 
0.1 
0.15 
0.2 
0.25 
0.3 
0.35 
0.4 
0.45 

- 
f 
_. 

0.5 
0.55 
0.6 
0.65 
0.7 
0.75 
0.8 
0.85 
0.9 
0.95 
0.99 
1.0 - 

Table 2: Results of ZIP Code recognition with varying levels of context 

bility for each ZIP Code in the test set (i.e., 1/312) and a zero prob- 
ability for every other ZIP Code. Intermediate levels of context were 
represented by mixtures of the two distributions that were computed 
as described in the previous section. 

The results of the experiment that varied levels on ZIP Code con- 
text are shown in Table 2. With a minimum of contextual information 
(all ZIP Codes equally likely), 68.6 percent of the ZIP Codes in the 
test set are correctly recognized; performance improves as additional 
contextual support is provided up to  95.2 percent correct with the max- 
imum contextual information. The increase in improvement is highly 
non-linear and that with f = .95, a correct rate of only 77 percent is 
achieved. 

Figure 2 graphically demonstrates that the error rate is only signif- 
icantly effected by the degree of mixture between the two prior distri- 
butions when the mixture is near 1 or 0. This means that there are 
three significantly different kinds of prior information: 

1. Only the minimum context (legal ZIP codes) 
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3 3 3 3  

Figure 1: Handwritten Zipcode Digits taken from US Mail 

Percentage Errors 

35 - 
Degree of Mixture 

Figure 2: Graph of Error Rate for ZIP Code recognition vs. Degree of 
context 

2. A mixture of the minimum context and the stronger context. 

3. The  stronger context (ZIP codes from the test set). 

Because the error rate acts like a step function with regard t o  the 
degree of context, our experiments indicate the effect of contextual 
prior information is qualitative rather than quantitative. 

5 Conclusion 
We performed empirical experiments on the importance of prior in- 
formation in a typical vision problem and discovered that prior prob- 
abilities for the individual digits have little effect on the accuracy of 
the resulting detector. We also studied the effect of contextual infor- 
mation and found that qualitative effects were much more important 
than quantitative effects. This study is evidence that precise estimation 
of prior probabilities is unnecessary in the domain of computer vision 
however accurate qualitative assessment of possibilities is important. 
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